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The sterically imposed electronic interaction in Nap
(POCL)(PCly) (Nap = naphthalene-1,8-diyl) results in
hypercoordination of the P atom by the O donor in the
bridging position between the two peri-substituents.

The extent of steric strain in peri-diphospha substituted
naphthalenesis only partially driven by the number and size of
substituents attached to phosphorus atoms, and further factors
such as P:---P interaction or bridging are also important. Both
the non-bonding (repulsive) and bridged interaction of peri-
substituents leads generally to an encumbered geometry.

The repulsive interaction in the series of chlorinated
derivatives of 1,8-di-P,P-naphthalenes is expected in bi-
sphosphane  Nap(PCl,), 1, phosphano-phosphorane
Nap(PCl,)(PCl4) 2 and bisphosphorane Nap(PCl,)» 3 (Scheme
1). Interestingly, whilst 1 shows the expected repulsive P---P
interaction, 2 collapses its steric strain to form structure 4,
which was found in both solid state and in solution.2 Formation
of bisphosphorane 3 was not observed even if 2 was exposed to
excess of Cl, gas, and thus remains hypothetical.2 These results
may indicate that a change of structure from repulsion to
bonding occurs between 1 and 2, and that further oxidation of
P in 2 might not be possible for steric reasons. Here we report
the preparation, structural and spectroscopic characterisation of
phosphoryl-phosphorane 5, the hypercoordinate peri-substi-
tuted diphosphanaphthalene with the same number of P
connectivities as 4, exhibiting a different mode of partial
relaxation of steric strain. Compound 5 is the formal product of
oxidation of P to PV in 4.
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Scheme 1

As direct oxidation of 4 using O, or Oz did not prove to be
possible,3 an aternative strategy to obtain 5 was used (Scheme
2). The oxidation of bisphosphane 1 by O, afforded phosphoryl-
phosphane 6,4 which after chlorination and recrystallization
gave 5 in the form of extremely moisture sensitive pale yellow
prisms.s

Crystallographic analysis® of 5 (Fig. 1 and 2) reveds a
twisted geometry of the naphthal ene backbone, with atoms P(1)
and P(9) displaced above and below the naphthalene least-
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Scheme 2

squaresplane (0.50 and 0.48 A). Also the positive value of i)l ay
angle” 9.3° and therelatively long P- - - P distance 3.023(1) A (in
1aP---Pdistance 2.81 A was found) indicates substantial strain

Fig. 1 Molecular Structure of 5. H atoms omitted for clarity. Selected bond
lengths (A) and angles (°): P(1)-O(1) 1.505(2), P(9)-O(1) 1.841(2), P(1)—-
CI(1) 1.9783(9), P(2)—CI(2) 1.9733(9), P(9)-CI(3) 2.1320(9), P(9)-Cl(4)
2.1513(9), P(9)-CI(5) 2.1754(9), P(9)-Cl(6) 2.1385(9), P(1)-C(1) 1.750(2),
P(9)C(9) 1.883(2), P(1)-O(1)-P(9) 129.0(1), CI(1)-P(1)-Cl(2) 102.79(4),
Cl(1)-P(1)-O(1) 106.10(7), CI(2)-P(1)-O(1) 113.63(7), CI(3)-P(9)-CI(5)
175.36(4), CI(6)—P(9)-O(1) 173.33(6), Cl(4)—-P(9)-C(9) 174.96(8), C(9)—
P(9)-CI(6) 95.29(8).

Fig. 2 lllustration of the extent of naphthal enering twisting and out-of-plane
distortions of peri-substituents in 5. Viewed along the naphthalene central
C(10)—C(5) bond.
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in the molecule, induced by either bridged or repulsive P---P
interaction. Indeed, the P---P distance matches well with these
found in P-O-P bridged condensed 1,8-bis(phosphonic) naph-
thalenes (2.89-2.99 A),8 and is significantly shorter than that in
non-bridged repulsive interacting 1,8-bis(phosphane oxide)
naphthalenes (3.38-3.48 A).2 Moreover, instead of the (possi-
bly distorted) pseudo-trigonal-bipyramidal P(9) configuration
expected for repulsive interaction, the atoms Cl(3)—Cl(6) and
C(9) occupy tetrahedral pyramidal positionswith the P(9) atom
lying at the base of the pyramid, the O(1) atom filling the vacant
position in a nearly perfect pseudo-octahedral coordination of
P(9). Despite the angular perfection of pseudo-octahedral
coordination as well as reasonable value for a P-O-P bridgir:g
angle (129.0°) observed, the distance P(9)-O(1) of 1.842(1)
indicates quite weak interaction (the normal rangefor aclassical
0%P-O bond length is 1.65-1.68 A). However, this is not
without precedent, as the recently reported derivatives contain-
ing an intramolecularly formed O—P dative bond connecting a
sulfoxide O donor atom with the then six-co-ordinate P centre
show bond lengths of 1.88 A.10 The P(1)-O(1) bond length
(1.505(2) A) is just within the range reported for P=O moieties
(1.46 £ 0.05 A), its bond order being ca. 1.7.11 As expected, the
P—CI distances on the P(1) atom are substantially shorter than
those on P(9) (1.97-1.98 vs. 2.13-2.17 A), the latter being
comparable to P-Cl distances found in PClg— (2.14 A).

The above data favour interpretation of the bondingin5asa
sterically imposed interaction of peri-substituentsvia a bridging
O atom, leading to apartial betaine structure. Although the four
Cl atoms connected to P(9) greatly enhance its electrophilicity,
the P(9) atom probably becomes hypercoordinate also as a
result of the forced electronic interaction with the (quite weak)
donor of electron density O(1), this interaction being imposed
by the stiff organic backbone.

The NMR of 5 shows that the bonding in solution isthe same
as observed in the crystal. The 31P{1H} NMR spectrum of 5is
an AX system with g1y 63.5, dpg) —182.7 ppm and 2J(PP) =
64.0 Hz. Thesignal of P(1) issignificantly deshielded compared
to the phosphoryl signal in 6 (8p 44 ppm), athough still lying in
therangefor RPOCI, (35—65 ppm). The same deshielding effect
was observed on coordination of PhsPO (dp 29) onto PCls,
yielding betaine PhaP*—O—-P-Cls (0p: 67).12 The shift of the
P(9) signa belongs clearly in the six-co-ordinate region and
compares well with the shift observed for [PhPCls]— (—203
ppm).13 Most importantly, the observed magnitude of 2J(PP) is
extremely high and indicates significant electronic PP inter-
action in 524 Such a magnitude is much higher than those
observed in adducts RsP*OP-Fs (R = Phand Bu, 2J(PP) = 24
and 27 Hz, respectively),15 containing significantly more
electrophilic and nucleophilic P centres, thus having good
prerequisites for very strong interaction. We have to conclude,
that increased electronic interaction between the P centresin 5
is again a phenomenon imposed by the presence of the rigid
organic skeleton in 5.16 |n contrast to 4, only very subtle
changes of J(PP) with temperature (range 213-295K) were
observed in the 31P{1H} NMR spectrum of 5. Compound 5 was
further characterised by *H NMR (including H-H DQF COSY
experiment), IR, Ra and MS spectroscopy, its purity was
assessed by elemental analysis.t” Very low solubility of 5 did
not allow measurement of 13C NMR spectra.

In summary, the presence of an electrophilic PCl4 group in
sterically encumbered 1,8-diphospha naphthalenes resultsin its
interaction with suitable, even weak, donor, ase.g. Pin the case

of 4, or O in the case of 5. In both cases a DA bond formation
affords relaxation from more strained repulsive geometry.
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